Coordonatele baricentrice absolute ale punctului A ′ A' A ′ în raport cu triunghiul A B C ABC A BC satisfac atât ecuația medianei din A A A , cât și ecuația cercului:
x 1 + y 1 + z 1 = 1 y 1 = z 1 a 2 y 1 z 1 + b 2 x 1 z 1 + c 2 x 1 y 1 = 0 } ⇒ A ′ ( − a 2 2 ( b 2 + c 2 ) − a 2 , b 2 + c 2 2 ( b 2 + c 2 ) − a 2 , b 2 + c 2 2 ( b 2 + c 2 ) − a 2 ) .
\begin{rcases}
x_1+y_1+z_1=1 \\
y_1=z_1 \\
a^2y_1z_1 + b^2x_1z_1 + c^2x_1y_1 = 0
\end{rcases} \Rightarrow \boxed{A'\bigg(\dfrac{-a^2}{2(b^2+c^2)-a^2},~ \dfrac{b^2+c^2}{2(b^2+c^2)-a^2},~ \dfrac{b^2+c^2}{2(b^2+c^2)-a^2}\bigg)}.
x 1 + y 1 + z 1 = 1 y 1 = z 1 a 2 y 1 z 1 + b 2 x 1 z 1 + c 2 x 1 y 1 = 0 ⎭ ⎬ ⎫ ⇒ A ′ ( 2 ( b 2 + c 2 ) − a 2 − a 2 , 2 ( b 2 + c 2 ) − a 2 b 2 + c 2 , 2 ( b 2 + c 2 ) − a 2 b 2 + c 2 ) .
Analog, B ′ ( c 2 + a 2 2 ( c 2 + a 2 ) − b 2 , − b 2 2 ( c 2 + a 2 ) − b 2 , c 2 + a 2 2 ( c 2 + a 2 ) − b 2 ) \boxed{B'\bigg(\dfrac{c^2+a^2}{2(c^2+a^2)-b^2},~ \dfrac{-b^2}{2(c^2+a^2)-b^2},~ \dfrac{c^2+a^2}{2(c^2+a^2)-b^2}\bigg)} B ′ ( 2 ( c 2 + a 2 ) − b 2 c 2 + a 2 , 2 ( c 2 + a 2 ) − b 2 − b 2 , 2 ( c 2 + a 2 ) − b 2 c 2 + a 2 ) și
C ′ ( a 2 + b 2 2 ( a 2 + b 2 ) − c 2 , a 2 + b 2 2 ( a 2 + b 2 ) − c 2 , − c 2 2 ( a 2 + b 2 ) − c 2 ) . \boxed{C'\bigg(\dfrac{a^2+b^2}{2(a^2+b^2)-c^2},~ \dfrac{a^2+b^2}{2(a^2+b^2)-c^2},~ \dfrac{-c^2}{2(a^2+b^2)-c^2}\bigg)}. C ′ ( 2 ( a 2 + b 2 ) − c 2 a 2 + b 2 , 2 ( a 2 + b 2 ) − c 2 a 2 + b 2 , 2 ( a 2 + b 2 ) − c 2 − c 2 ) .
"⇒ \Rightarrow ⇒ ": a = b = c ⇒ A ′ ( − 1 3 , 2 3 , 2 3 ) , B ′ ( 2 3 , − 1 3 , 2 3 ) , C ′ ( 2 3 , 2 3 , − 1 3 ) ⇒ G ′ ( 1 3 , 1 3 , 1 3 ) a=b=c \Rightarrow A'\bigg(-\dfrac{1}{3},~\dfrac{2}{3},~\dfrac{2}{3}\bigg), B'\bigg(\dfrac{2}{3},~-\dfrac{1}{3},~\dfrac{2}{3}\bigg),~ C'\bigg(\dfrac{2}{3},~\dfrac{2}{3},~-\dfrac{1}{3}\bigg) \Rightarrow G'\bigg(\dfrac{1}{3},~\dfrac{1}{3},~\dfrac{1}{3}\bigg) a = b = c ⇒ A ′ ( − 3 1 , 3 2 , 3 2 ) , B ′ ( 3 2 , − 3 1 , 3 2 ) , C ′ ( 3 2 , 3 2 , − 3 1 ) ⇒ G ′ ( 3 1 , 3 1 , 3 1 ) , deci G ′ = G . \boxed{G'=G}. G ′ = G .
"⇐ \Leftarrow ⇐ ": Dacă G ′ = G G'=G G ′ = G , atunci x 1 + x 2 + x 3 3 = 1 3 \dfrac{x_1+x_2+x_3}{3}=\dfrac{1}{3} 3 x 1 + x 2 + x 3 = 3 1 și analoagele. Folosind formula medianei, obținem:
− a 2 m a 2 + c 2 + a 2 m b 2 + a 2 + b 2 m c 2 = 4 ( 1 ) \dfrac{-a^2}{m_a^2} + \dfrac{c^2+a^2}{m_b^2} + \dfrac{a^2+b^2}{m_c^2} = 4 \quad (1) m a 2 − a 2 + m b 2 c 2 + a 2 + m c 2 a 2 + b 2 = 4 ( 1 )
b 2 + c 2 m a 2 + − b 2 m b 2 + a 2 + b 2 m c 2 = 4 ( 2 ) \dfrac{b^2+c^2}{m_a^2} + \dfrac{-b^2}{m_b^2} + \dfrac{a^2+b^2}{m_c^2} = 4 \quad (2) m a 2 b 2 + c 2 + m b 2 − b 2 + m c 2 a 2 + b 2 = 4 ( 2 )
b 2 + c 2 m a 2 + c 2 + a 2 m b 2 + − c 2 m c 2 = 4 ( 3 ) \dfrac{b^2+c^2}{m_a^2} + \dfrac{c^2+a^2}{m_b^2} + \dfrac{-c^2}{m_c^2} = 4 \quad (3) m a 2 b 2 + c 2 + m b 2 c 2 + a 2 + m c 2 − c 2 = 4 ( 3 )
( 1 ) − ( 2 ) ⇒ m a = m b ( 2 ) − ( 3 ) ⇒ m b = m c } ⇒ m a = m b = m c ⇒ a = b = c .
\begin{rcases}
(1)-(2) \Rightarrow m_a=m_b \\
(2)-(3) \Rightarrow m_b=m_c
\end{rcases} \Rightarrow m_a=m_b=m_c \Rightarrow \boxed{a=b=c}.
( 1 ) − ( 2 ) ⇒ m a = m b ( 2 ) − ( 3 ) ⇒ m b = m c } ⇒ m a = m b = m c ⇒ a = b = c .