
Fie CF⊥BP și CF∩DP={H}. Rezultă CP⊥BH.
MC2=AC2=CD⋅CB⇒CDMC=MCCB⇒△CBM∼△CMD⇒B1=M1.
D=F=90°⇒BDFH inscriptibil ⇒B1=H1.
Deci M1=H1⇒CDMH inscriptibil ⇒CMH=90°. Analog, BNH=90°.
HM2=HF⋅HC△HFP∼△HDC⇒HF⋅HC=HP⋅HD}⇒HM2=HP⋅HD.Analog, HN2=HP⋅HD. Deci HM=HN.
△HMQ≡△HNQ (I.C.)⇒MQ=NQ.