Exercițiul 760

E.760. Dacă A^=D^=90°, P(AD), CM=CA, BN=BA,\widehat{A}=\widehat{D}=90\degree,~P \in (AD),~CM=CA,~BN=BA, atunci MQ=NQ.MQ=NQ.

Alin Crețu (trunchiată de LM)
Soluție:

Fie CFBPCF \perp BP și CFDP={H}.CF \cap DP = \{H\}. Rezultă CPBH.CP \perp BH.

MC2=AC2=CDCBMCCD=CBMCCBMCMDB1^=M1^.MC^2=AC^2=CD \cdot CB \Rightarrow \dfrac{MC}{CD} = \dfrac{CB}{MC} \Rightarrow \triangle CBM \sim \triangle CMD \Rightarrow \boxed{\widehat{B_1} = \widehat{M_1}}.

D^=F^=90°BDFH\widehat{D} = \widehat{F}=90\degree \Rightarrow BDFH inscriptibil B1^=H1^.\Rightarrow \boxed{\widehat{B_1} = \widehat{H_1}}.

Deci M1^=H1^CDMH\widehat{M_1} = \widehat{H_1} \Rightarrow CDMH inscriptibil CMH^=90°.\Rightarrow \boxed{\widehat{CMH}=90\degree}. Analog, BNH^=90°.\boxed{\widehat{BNH}=90\degree}.

HM2=HFHCHFPHDCHFHC=HPHD}HM2=HPHD. \begin{rcases} HM^2=HF \cdot HC \\ \triangle HFP \sim \triangle HDC \Rightarrow HF \cdot HC = HP \cdot HD \end{rcases} \Rightarrow \boxed{HM^2=HP \cdot HD}.

Analog, HN2=HPHD.\boxed{HN^2=HP \cdot HD}. Deci HM=HN.\boxed{HM=HN}.

HMQHNQ (I.C.)MQ=NQ.\triangle HMQ \equiv \triangle HNQ~ (I.C.) \Rightarrow \boxed{MQ=NQ}.