E.245.
Construim △BCE\triangle BCE△BCE echilateral. Construim △CBF\triangle CBF△CBF isoscel ⇒AF=DC\Rightarrow \boxed{AF=DC}⇒AF=DC și FBC^=80°⇒FBE^=20°.\widehat{FBC}=80 \degree \Rightarrow \boxed{\widehat{FBE}=20\degree}.FBC=80°⇒FBE=20°. B3^=120−80=40°⇒AF=BF=DC.\widehat{B_3}=120-80=40\degree \Rightarrow AF= \boxed{BF=DC}.B3=120−80=40°⇒AF=BF=DC.
Deci △FBE≡△DCB\triangle FBE \equiv \triangle DCB△FBE≡△DCB (LUL). Cum E1^=70−60=10°⇒B1^=10°.\widehat{E_1} = 70-60=10\degree \Rightarrow \boxed{\widehat{B_1}=10\degree}.E1=70−60=10°⇒B1=10°.