Exercițiul 646

E.646.

Alin Crețu, MateMaraton, 26.12.2024
Soluție:

{BMBC=BDBA=BEBGCNCB=CFCA=CGCE{BMBC=BE(BE+EG)CNCB=(CEEG)CE \begin{cases} BM \cdot BC = BD \cdot BA = BE \cdot BG \\ CN \cdot CB = CF \cdot CA = CG \cdot CE \end{cases} \Leftrightarrow \begin{cases} BM \cdot BC = BE \cdot (BE+\textcolor{red}{EG}) \\ CN \cdot CB = (CE-\textcolor{red}{EG}) \cdot CE \end{cases} \Rightarrow
BMBCBEBE=CECNCBCE\Rightarrow \dfrac{BM \cdot BC}{BE} -BE = CE - \dfrac{CN \cdot CB}{CE}

BMBCBE+CNCBCE=BE+CE\Leftrightarrow \dfrac{BM \cdot \cancel{BC}}{BE} + \dfrac{CN \cdot \cancel{CB}}{CE} = \cancel{BE+CE}

BMBE=1CNCE=NECE\Leftrightarrow \dfrac{BM}{BE} = 1- \dfrac{CN}{CE} = \dfrac{NE}{CE}

BMME=NENC.\Leftrightarrow \boxed{\dfrac{BM}{ME} = \dfrac{NE}{NC}}.