E.372. Calculați 16⋅422018:(4⋅221⋅222⋅223⋅…⋅222018).16 \cdot 4 ^ {2 ^ {2018}}:(4 \cdot 2^{2^1} \cdot 2^{2^2} \cdot 2^{2^3} \cdot \ldots \cdot 2^{2^{2018}}).16⋅422018:(4⋅221⋅222⋅223⋅…⋅222018).
Indicații: Se calculează separat suma: S=20+21+22+…+22018.S=2^0+2^1+2^2 + \ldots + 2^{2018}.S=20+21+22+…+22018.
Răspuns: 16.16.16.
Calculam separat suma: S=20+21+22+…+22018(1)S=2^0+2^1+2^2 + \ldots + 2^{2018} \quad (1)S=20+21+22+…+22018(1) Înmulțind cu 222 obținem: 2S=21+22+23+…+22019(2)2S=2^1+2^2+2^3 + \ldots + 2^{2019} \quad (2)2S=21+22+23+…+22019(2) Din (2)-(1) rezultă S=22019−1.\boxed{S=2^{2019}-1}.S=22019−1.
N=16⋅(22)22018:(2⋅220+21+22+…+22018)=N =16 \cdot (2^2)^{2^{2018}} : (2 \cdot 2^{2^0+2^1+2^2 + \ldots + 2^{2018}})=N=16⋅(22)22018:(2⋅220+21+22+…+22018)= =16⋅22⋅22018:(2⋅222019−1)==16 \cdot 2^{2 \cdot 2^{2018}}: (2 \cdot 2^{2^{2019}-1})==16⋅22⋅22018:(2⋅222019−1)= =16⋅222019:(2⋅222019:2)==16 \cdot 2^{2^{2019}}: (\cancel{2} \cdot 2^{2^{2019}}:\cancel{2})==16⋅222019:(2⋅222019:2)= =16⋅222019:222019=16.=16 \cdot 2^{2^{2019}}:2^{2^{2019}} = 16.=16⋅222019:222019=16.