E.359. Dacă A=13+132+133+…+132013,A=13+13^2+13^3 + \ldots +13^{2013},A=13+132+133+…+132013, arătați că 11⋅A11 \cdot A11⋅A este divizibil cu 2013.2013.2013.
2013=11⋅183,2013 = 11 \cdot 183,2013=11⋅183, deci este suficient să arătăm că A ⋮ 183.A ~\vdots~183.A ⋮ 183.
A=(13+132+133)+(134+135+136)+…+(132011+132012+132013)=A=(13+13^2+13^3) + (13^4+13^5+13^6) + \ldots + (13^{2011}+13^{2012} + 13^{2013})=A=(13+132+133)+(134+135+136)+…+(132011+132012+132013)= =13(1+13+132⏟183)+134(1+13+132⏟183)+…+132011(1+13+132⏟183)==13(\underbrace{1+13+13^2}_{183})+ 13^4(\underbrace{1+13+13^2}_{183}) + \ldots+13^{2011}(\underbrace{1+13+13^2}_{183})==13(1831+13+132)+134(1831+13+132)+…+132011(1831+13+132)= =183(13+134+…+132011=M183.=183(13+13^4+\ldots+13^{2011}=M_{183}.=183(13+134+…+132011=M183.