E.247. Alin Pop
AM2+BN2MN≥2⋅AM⋅BNMN=∗2⋅AM⋅DQMQ=2⋅AM⋅ADAM.\dfrac{AM^2+BN^2}{MN} \geq \dfrac{2\cdot AM \cdot BN}{MN} \overset{*}{=} \dfrac{2 \cdot AM \cdot DQ}{MQ} = \dfrac{2 \cdot \cancel{AM} \cdot AD}{\cancel{AM}}.MNAM2+BN2≥MN2⋅AM⋅BN=∗MQ2⋅AM⋅DQ=AM2⋅AM⋅AD.
(*) Cum raportul AM⋅BNMN\dfrac{AM \cdot BN}{MN}MNAM⋅BN nu depinde de poziția lui PPP (lema lui Haruki), putem alege, fără a restrânge generalitatea, ADBPADBPADBP trapez isoscel.