Metoda 1: Notăm a,(bc)=x∣×100
abc,(bc)=10x∣−x
abc,(bc)−a,(bc)=99x
abc−a=99x⇒x=99abc−a.
Metoda 2: a,(bc)=a+(0,bc+0,00bc+0,0000bc+…)=
=a+(102bc+104bc+106bc+…)=
=a+102bc⋅n→∞limk=0∑n102k1=a+102bc⋅n→∞lim1−10211−102n+21=
=a+102bc⋅1−10211=99a⋅102+bc−a=99abc−a.