Exercițiul 222

E.222. Să se demonstreze formula: a,(bc)=abca99.\overline{a,(bc)} = \dfrac{\overline{abc}-a}{99}.

MM, 24.04.2024
Soluție:

Metoda 1: Notăm a,(bc)=x×100\overline{a,(bc)} = x \quad | \times100
abc,(bc)=10xx\overline{abc,(bc)} = 10x \quad | -x
abc,(bc)a,(bc)=99x\overline{abc,(bc)} - \overline{a,(bc)} = 99x
abca=99xx=abca99.\overline{abc}-a=99x \Rightarrow \boxed{x=\dfrac{\overline{abc}-a}{99}}.

Metoda 2: a,(bc)=a+(0,bc+0,00bc+0,0000bc+)=\overline{a,(bc)} = a + (0,bc + 0,00bc + 0,0000bc + \dots )=
=a+(bc102+bc104+bc106+)== a+ \Big(\dfrac{\overline{bc}}{10^2} + \dfrac{\overline{bc}}{10^4} + \dfrac{\overline{bc}}{10^6} + \dots \Big)=
=a+bc102limnk=0n1102k=a+bc102limn11102n+211102==a + \dfrac{\overline{bc}}{10^2} \cdot \lim\limits_{n\to\infty} \sum\limits_{k=0}^{n} \dfrac{1}{10^{2k}}=a + \dfrac{\overline{bc}}{10^2} \cdot \lim\limits_{n\to\infty} \dfrac{1-\dfrac{1}{10^{2n+2}}}{1-\dfrac{1}{10^2}}=
=a+bc102111102=a102+bca99=abca99.=a + \dfrac{\overline{bc}}{10^2} \cdot \dfrac{1}{1-\dfrac{1}{10^2}}=\dfrac{a\cdot 10^2 + \overline{bc}-a}{99} = \dfrac{\overline{abc}-a}{99}.