Exercițiul 214

E.214. Fie a,b(0,1)a,b \in (0,1) astfel încât a2+b2=1.a^2+b^2=1. Demonstrați că a+b+1a+1b32.a+b+\dfrac{1}{a} + \dfrac{1}{b} \geq 3\sqrt{2}.

MM, 29.02.2024, clasa a 9-a.
Soluție:

Soluția 1 (LM). Notăm a=sinx,a=\sin{x}, b=cosx,b=\cos{x}, cu x(0,π2).x\in\Big(0,\dfrac{\pi}{2}\Big). Deci și sin2x(0,1).\boxed{\sin{2x} \in (0,1)}.

a+b+1a+1b=sinx+cosx+1sinx+1cosxAmGma+b+\dfrac{1}{a} + \dfrac{1}{b} = \sin{x} + \cos{x} + \dfrac{1}{\sin{x}} + \dfrac{1}{\cos{x}} \overset{Am-Gm}{\geq}

2sinxcosx+2sinxcosx=2sin2x+22sin2x=\geq 2\sqrt{\sin{x}\cos{x}} + \dfrac{2}{\sqrt{\sin{x}\cos{x}}} =\sqrt{2} \cdot \sqrt{\sin{2x}} + \dfrac{2\sqrt{2}}{\sqrt{\sin{2x}}}=

=2((sin2x10)(sin2x20)sin2x+3)32.=\sqrt{2}\Big(\dfrac{(\overbrace{\sqrt{\sin{2x}}-1}^{\leq 0})(\overbrace{\sqrt{\sin{2x}}-2}^{\leq 0})}{\sqrt{\sin{2x}}} + 3 \Big)\geq 3\sqrt{2}.

Soluția 2 (Filip Munteanu). Notăm a+b=s.\boxed{a+b=s}.

a+b2a2+b22=12s2.\dfrac{a+b}{2} \leq \sqrt{\dfrac{a^2+b^2}{2}}=\dfrac{1}{\sqrt{2}} \Rightarrow \boxed{s \leq \sqrt{2}}.

a+b+1a+1ba+b+4a+b.a+b+\dfrac{1}{a} + \dfrac{1}{b} \geq a+b+\dfrac{4}{a+b}. Deci problema se reduce la a demonstra inegalitatea s232s+40.s^2-3\sqrt{2}s+4\geq 0.

Soluția 3 (Filip Munteanu). Funcția f:(0,1)R,f:(0,1)\rightarrow \R, f(x)=x+1xf(x)=x+\dfrac{1}{x} este convexă și descrescătoare, deci
f(a)+f(b)2f(a+b2)2f(22)=32.f(a)+f(b) \geq 2 \cdot f\Big(\dfrac{a+b}{2}\Big) \geq 2 \cdot f\Big(\dfrac{\sqrt{2}}{2}\Big) = 3\sqrt{2}.

Soluția 4 (Alin Pop). 1=a2+b22ab1ab2.1=a^2+b^2 \geq 2ab \Rightarrow \boxed{\dfrac{1}{ab} \geq 2}.

a+1a=a+12a+12a314a3.a+\dfrac{1}{a} = a+\dfrac{1}{2a} + \dfrac{1}{2a} \geq 3\sqrt[3]{\dfrac{1}{4a}}. Analog, b+1b314b3.b+\dfrac{1}{b} \geq 3\sqrt[3]{\dfrac{1}{4b}}.

a+b+1a+1b3(14a3+14b3)6116ab662166=32.a+b+\dfrac{1}{a} + \dfrac{1}{b} \geq 3\Big(\sqrt[3]{\dfrac{1}{4a}}+\sqrt[3]{\dfrac{1}{4b}} \Big) \geq 6\sqrt[6]{\dfrac{1}{16ab}} \geq 6\sqrt[6]{\dfrac{2}{16}} = 3\sqrt{2}.